Hyper-V vs ESX at the datacenter

Gabrie van Zanten

www.GabesVirtualWorld.com

Which hypervisor to use in the data center?

- Virtualisation has matured
- Virtualisation in the data center grows fast
- The battle on which hypervisor to use at the data center has started
- Lies, damn lies and marketing

Compare of the following items

- Version choice
- Deployment in datacenter
- Guest OS
- Memory over-commit
- Migrations
- Storage usage
- Windows 2008 R2 Hyper-V 2.0
- VMware vSphere

Version choice

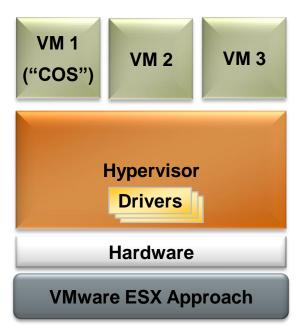
- ESXi (Free)

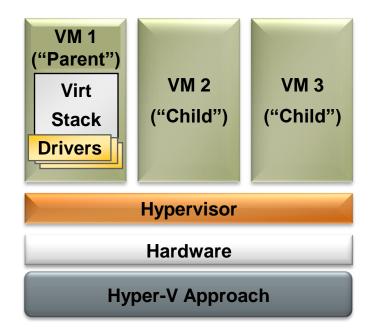
- > No Console OS, 32Mb size, BIOS
- As powerful as ESX
- Patches are treated like BIOS firmwares, so no part fixes
- HA / VMotion via a purchasable license upgrade

- ESX 3.5

- RedHat EL5 derivative as the console OS, 2Gb size
- HA, VMotion extra licenses
- Updates and patches for Kernel and RedHat OS (only from Vmware)

Microsoft Hyper-V Server 2008 (Free)


- Windows 2008 core behind the scenes
- Max 32Gb host RAM, max 4 host cpu
- As patch sensitive as Windows 2008 core
- No HA, No Quick Migration


Microsoft Server 2008 Enterprise & Datacenter with Hyper-V

- HA, Quick Migration
- Windows 2008 core patches or Windows 2008 patches

Deployment in data center

- HCL a limitation or a blessing?
 - Host systems predominantly the main brands
 - Network configurations with extended switch configurations
 - Driver optimalisations?

Deployment in data center

VMware ESX 3.5	Hyper-V
Extended HCL with more as 400 host systems	Datacenter network demands limit freedom of choice tremendously
32bit and 64bit hosts	Demands Intel VT / AMD-V Extensions
Hardware independent deployment for HCL systems	Specific host drivers limit deployment
HCL but extensive hardware choice	No HCL, but more limited in hardware choice !!!

Guest OS

VMware ESX 3.5	Hyper-V
All Windows server flavors	W2k Sp4 (1 cpu), W2003 Sp2 (1 of 2 cpu), W2008 (1,2 of 4 cpu)
Various Linux distributions (Mandrake, Ubuntu, RedHat, SUSE, TurboLinux)	SUSE Linux Server 10 Sp1 / Sp2 (1 cpu)
FreeBSD, Netware 4.2 and up, SUN Solaris	

- Support en support
 - OS supported by Hypervisor
 - Hypervisor supported by OS
 - Windows Server Virtualization Validation Program (SVVP)
- Old OS versions and multiple CPUs
 - Real life customer example with 721 VMs
 - 4 x RedHat Linux
 - ∘ 2 x NT4
 - 8 x Windows 2000 (2 cpu)
 - ∘ 15 x Windows 2003 with 4 cpu
 - 100 x Windows 2003 SP1 with 1 or 2 cpu
 - Total: 129 VMs are not Hyper-V compatible
 - Especially older hardware, more expensive in maintenance

Memory usage

No. 9

- Definition of overcommit is important!
 - Microsoft:
 - Ability to assign more memory to VMs as is available in host
 - Result is swap to disk a.k.a. slow
 - VMware:

03 April 2009

- Ability to assign more memory to VMs as is available in host
- BUT VMs real memory usage never exceeds host memory
- Result is NO swap to disk but big savings
- Transparent Page Sharing
 - Store equal memory blocks just 1x

Name	Host (Gb)	Assigned (Gb)	OverCommit	
esx-01	40	38		
esx-02	40	46	6	
esx-03	40	33		
esx-04	40	48	8	
esx-05	40	35		
esx-06	40	49	9	
esx-07	40	29		
esx-08	40	42	2	
esx-09	40	37		
esx-10	40	33		
esx-11	40	35		
esx-12	40	45	5	
esx-13	40	52	12	
esx-14	40	48	8	
esx-15	40	37		
esx-16	40	42	2	
esx-17	40	46	6	
esx-18	40	30		
esx-19	64	87	23	
esx-20	64	35		
esx-21	64	85	21	
			101 Gb	
Hardware RAM				

Hyper-V vs ESX

Motions

- Cold Migration
 - VM powered off, migrate VM and/or data, VM power on
- Hyper-V Quickmigration
 - Suspend VM, disconnect sessions, restart VM
 - No CPU compatibility check
- VMware ESX VMotion
 - Live migration of VM between hosts without disconnects
- VMware ESX SVMotion
 - Live migration of the disks between datastores
 - Tough command line interface, 3rd party tools
- QuickMigration means down time for more as just the application
- Emergency repair of host hits large number of applications

Motions

- Cluster Storage in Hyper-V demands a separate LUN per VM.
 - Per VM extra storage needed for snapshots and resizing +/- 10-15Gb
 - Current customer:
 - Average VM disk size = 40 GB
 - 700 VMs
 - Hyper-V:
 - Average VM disk size: 40Gb -> 10Gb extra per LUN
 - Over 700 VMs = 700 x 40 + 700 x 10 = 35 TB
 - With ESX we use 30 VMs per LUN and reserve 30Gb per LUN
 - 25 LUNs x 30VMs x 40GB = 30 TB
 - 25 LUNs x 30GB spare = 750GB
 - Total 4TB less disk capacity required

Windows 2008 R2 Hyper-V 2.0

- Failover Clustering in Windows Server 2008 R2 known as Cluster Shared Volumes or CSV
- Live Migration (1 per host)
- iSCSI Configuration UI included in Hyper-V 2008 R2
- Dynamic Disk configuration
- Expected release 2010 Q1 (+180 days for Hyper-V?)

VMware vSphere

- VM Fault Tolerance: clustering on VM level (1 cpu, 10% performance hit)
- VM Safe / VM vShields: security on hypervisor level instead of OS level
- Hot Clone VMs
- VMware AppSpeed: Performance garantuees at application level
- Expected release summer 2009

Questions?

Questions??

Gabrie.van.Zanten@logica.com

www.GabesVirtualWorld.com